

Home Search Collections Journals About Contact us My IOPscience

Electrical resistivity of single-crystal ${\sf URhGe}_2$ under high pressure

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2019 (http://iopscience.iop.org/0953-8984/15/28/318)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:15

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) S2019-S2021

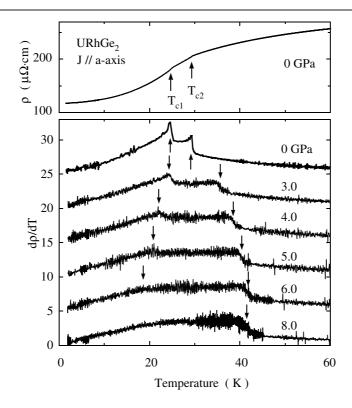
Electrical resistivity of single-crystal URhGe₂ under high pressure

Tatsuma D Matsuda¹, Shugo Ikeda^{1,2}, Yoshinori Haga¹, Etsuji Yamamoto¹, Masato Hedo², Yoshiya Uwatoko² and Yoshichika Ōnuki^{1,2}

¹ Advanced Science Research Centre, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

² Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
³ Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581, Japan

E-mail: tmatsuda@popsvr.tokai.jaeri.go.jp


Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2019

Abstract

We have measured the electrical resistivity under pressure for the orthorhombic ferromagnet URhGe₂. Its two ferromagnetic ordering temperatures $T_{C2} = 30$ K and $T_{C1} = 25$ K exhibit different pressure dependences. T_{C2} increases under pressure from 30 K at ambient pressure to 40 K at 6–8 GPa, while T_{C1} decreases with increasing pressure and seems to vanish at around 8 GPa. URhGe₂ is found to be ferromagnetic even at 8 GPa, and the values of A and ρ_0 in the electrical resistivity expression $\rho = \rho_0 + AT^2$ are unchanged against pressure.

Cerium and uranium compounds exhibit a variety of properties such as magnetic, charge, and quadrupolar orderings, heavy fermions, and unconventional superconductivity. Recently, a new aspect of these compounds with magnetic ordering has been discovered. When pressure P is applied to CeIn₃ [1], CeRhIn₅ [2], and UGe₂ [3], the ordering temperature T_{ord} decreases, and a quantum critical point corresponding to the extrapolation $T_{ord} \rightarrow 0$ K is reached at $P = P_c$. Surprisingly, superconductivity appears around P_c even in the ferromagnetic state of UGe₂ [3]. Furthermore, a ferromagnet, URhGe, with a Curie temperature $T_c = 9.5$ K and a saturated moment $\mu_s = 0.42 \mu_B/U$ becomes superconductive below 0.25 K [4]. Ferromagnetic moment-mediated superconductivity is most probably realized in UGe₂ and URhGe.

In order to clarify the superconducting properties of these ferromagnetic compounds, we searched for other similar uranium compounds. One of the candidates is URhGe₂ with orthorhombic crystal structure (*Immm*, a = 4.294 Å, b = 15.98 Å, and c = 8.726 Å) [5]. Our recent data for the single-crystalline sample indicated two anomalies, at $T_{C2} = 30$ K and $T_{C1} = 25$ K [6], which correspond to ferromagnetic orderings as determined from the magnetic susceptibility and specific heat measurements. The magnetic easy axis is the *b*-axis, with a

Figure 1. Temperature dependences of the electrical resistivity ρ at ambient pressure (top) and $d\rho/dT$ for different pressures (bottom) in URhGe₂. The vertical scales for $d\rho/dT$ are shifted by five units.

saturated moment of 0.76 $\mu_{\rm B}/\rm{U}$, while the other axes are hard axes. The electronic specific heat coefficient $\gamma = 98 \text{ mJ K}^{-2} \text{ mol}^{-1}$ is relatively large in the uranium compounds [6].

In the present study we have investigated the electrical resistivity under pressure for URhGe₂, and determined the P-T phase diagram, using a single-crystal sample grown by the Czochralski pulling method in a tetra-arc furnace (see [6] for details of the sample preparation).

Figure 1 (top) shows the temperature dependence of the electrical resistivity ρ at ambient pressure for the current J along the a-axis. The ordering temperatures denoted by T_{C1} and T_{C2} are due to ferromagnetic orderings. Figure 1 (bottom) displays the temperature dependence of $d\rho/dT$ for different pressures. The pressure was applied using a cubic anvil cell up to 8 GPa. The ordering temperatures T_{C1} and T_{C2} are clearly determined from the $d\rho/dT$ plot. The ordering temperatures T_{C2} increases monotonically with increasing pressure and saturates at 6 GPa, while T_{C1} decreases and seems to be fading out around 8 GPa.

Figure 2 shows the pressure dependences of T_{C1} and T_{C2} . These results indicate that URhGe₂ is still ferromagnetic even at 8 GPa, and a much higher pressure is needed to suppress the ferromagnetic state.

The low-temperature resistivity under pressure follows the T^2 -dependence of $\rho = \rho_0 + AT^2$ below 6–7 K. We show in figure 3 the pressure dependences of the values of the coefficients A and ρ_0 . The A- and ρ_0 -values are approximately unchanged against pressure. A small maximum in the A-value is observed at 4 GPa, but this change is negligibly small. These results are expected because URhGe₂ is still ferromagnetic, and its ordering temperature remains well above the fitting upper limit.

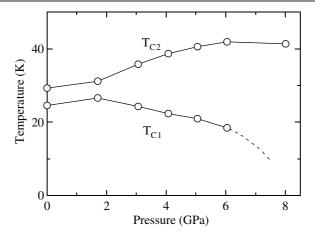
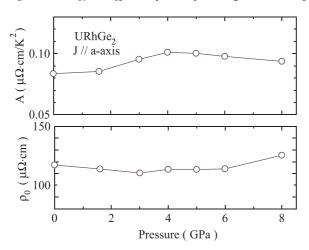



Figure 2. The T_{C1} and T_{C2} versus pressure phase diagram of URhGe₂.

Figure 3. The pressure dependence of the coefficient A and the residual resistivity ρ_0 in $\rho(T) = \rho_0 + AT^2$ for URhGe₂.

In conclusion, we have studied the pressure dependence of the ferromagnetic ordering in URhGe₂ up to 8 GPa. This compound is still ferromagnetic even at 8 GPa.

Acknowledgment

This work was financially supported by a Grant-in-Aid for COE Research (10CE2004) from the Ministry of Education, Science, Sports and Culture.

References

- [1] Mathur N D et al 1998 Nature 349 39
- [2] Hegger H et al 2000 Phys. Rev. Lett. 84 4986
- [3] Saxena S S et al 2000 Nature 406 587
- [4] Aoki D et al 2001 Nature 413 613
- [5] Hickey E et al 1989 Mater. Res. Bull. 24 1111
- [6] Matsuda T D et al 2003 Acta Phys. Pol. B 34 1071